Foundations of Probabilistic Proofs

A course by **Alessandro Chiesa**

Lecture 20

Robust PCPs

Robust PCPs

We construct robust PCPs for NP.

They are used as "outer PCP" in the proof of the PCP Theorem via proof composition.

We consider non-adaptive verifiers:
$$V^{\pi}(x;g) = D(S(x,p), \pi[Q(x,g)])$$
.

decision state query algorithm algorithm algorithm

Define $R(V) = \{(s, a) \mid s \in S(x,g) \land a \in \Sigma^{Q(x,p)} \land D(s,a) = 1\}$ and $R(V)[s] = \{a \mid (s,a) \in R(V)\}$.

def: (P,V) is a PCP system for a relation R with robustness parameter of if:

- ① completeness: $\forall (x,w) \in \mathbb{R}$ $P_{\Gamma}[V^{\Pi}(x) = 1 \mid \pi \leftarrow P(x,w)] \ge 1 \varepsilon_{c}$.
- ② robust soundness: Yx x L(R) Yπ Pr[Δ(π[Q(x,g)], R(V)[S(x,g)]) «σ] « εs.

Robustness $\sigma \in [0, \frac{1}{9})$ (wit Hamming distance over Σ) is trivial.

The challenge is to achieve $\sigma = \Omega(1)$ even if q is super-constant.

We achieve a robust analogue of the poly-length polylog-query PCP:

<u>theorem:</u> $NP \subseteq PCP[\mathcal{E}_{c}=0, \mathcal{E}_{s}=\frac{1}{2}, \mathcal{\Sigma}=\{0,1\}, \ell=poly(n), q=poly(logn), r=O(logn), \sigma=\Omega(1)]$

Proof Plan

We prove the theorem in two steps, starting from the "canonical" PCP for NP.

NP
$$\subseteq$$
 PCP [$\mathcal{E}_c = 0$, $\mathcal{E}_s = \frac{1}{2}$, $\mathcal{E} = \{0,1\}$,

Step 1: query bundling

reduce query complexity to constant at the expense of alphabet size

$$NP \subseteq PCP\left[\mathcal{E}_{c} = 0, \mathcal{E}_{S} = \frac{1}{2}, \sum_{n=1}^{\infty} \frac{1}{2}, \sum_{n=$$

Step 2: tobustification achieve constant robustness (over {0,1}) at the expense of query complexity

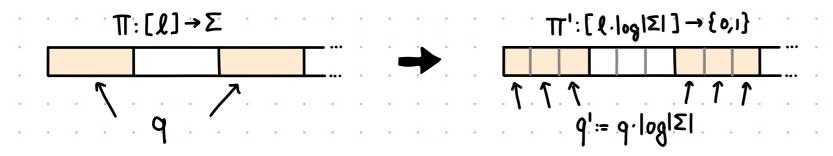
theorem: NPC PCP [
$$\mathcal{E}_c = 0$$
, $\mathcal{E}_s = \frac{1}{2}$, $\Sigma = \{0,1\}$, $\ell = \text{poly(n)}$, $q = \text{poly(logn)}$, $r = O(\log n)$, $\tau = O(\log n)$

We study each step.

Robustification

GOAL: achieve good robustness over the binary alphabet, starting from a large-alphabet PCP.

IDEA: break each large-symbol query into multiple bit queries



This preserves completeness and soundness, and reduces the alphabet to binary.

PROBLEM: the resulting PCP may have trivial robustness $\sigma \in [0, \frac{1}{q \cdot \log |\Sigma|})$.

Many local views in the large-alphabet PCP may be I symbol (out of q) away from accepting. In the binary-alphabet PCP, each such view may be I bit (out of $q \cdot log(\Sigma I)$) away from accepting.

The simple idea can be fixed to achieve this lemma:

$$\frac{\text{lemma:}}{\leq PCP\left[\mathcal{E}_{c},\mathcal{E}_{s},\Sigma,\mathcal{L},q,r\right]} \qquad \text{no dependence on } \Sigma$$

$$\leq PCP\left[\mathcal{E}_{c},\mathcal{E}_{s},\Sigma'=\left\{0,i\right\},\mathcal{L}'=O(\mathcal{L}\cdot\log|\Sigma|),q'=O(q\cdot\log|\Sigma|),r'=r,\sigma=\omega\left(\frac{1}{q}\right)\right]$$

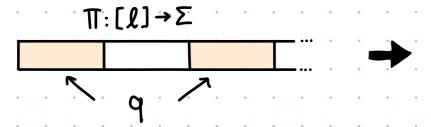
Robustification

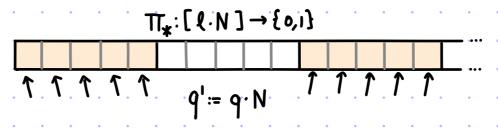
IDEA: "sparsify" accepting local views by encoding each proof symbol via an error-correcting code

Let $Enc: \Sigma \to \{0,1\}^N$ be an injective map with relative distance $\delta(\forall distinct a,b \in \Sigma \land (Enc(a), Enc(b)) \geqslant \delta)$.

$$\underline{\text{lemma:}} \ \ \mathsf{PCP} \left[\, \mathcal{E}_{\mathsf{c}}, \mathcal{E}_{\mathsf{s}}, \boldsymbol{\Sigma}, \, \mathcal{L}, \, q, \, r \, \right] \subseteq \mathsf{PCP} \left[\, \mathcal{E}_{\mathsf{c}}, \mathcal{E}_{\mathsf{s}}, \, \boldsymbol{\Sigma}' = \{ 0, 1 \} \,, \, \, \mathcal{L}' = \mathcal{L} \cdot \mathsf{N} \,\,, \, \, q' = \, q \cdot \mathsf{N} \,, \, \, r' = r \,, \, \, \boldsymbol{\sigma} = \frac{\delta}{4q} \, \right]$$

The prior lemma follows from the fact that \exists Enc with $N = O(\log |\Sigma|)$ and $\delta = \Omega(1)$.





P* (x,w)

- 1. $\Pi := P(x,w) \in \Sigma^{\ell}$
- 2. $\forall i \in [L]: C_i := E_{nc}(\pi[i]) \in \{0,1\}^N$
- 3. Output Tix:= (ci)ie[e] e {0,1}

 $\bigvee_{\mathbf{T}_{\mathbf{X}}} (\mathbf{X})$

Run V(x) by answering each query ie[l];

- · make N queries to read Ci∈ {0,1} N
- · return a:= Enc'(Ci)∈ Σ (reject if a=1)

Completeness: If $(x,w) \in R$ then $Pr[V^{\Pi}(x)=1| \Pi \leftarrow P(x,w)] \ge 1- \varepsilon_c$. Since $P_*(x,w)$ outputs $\Pi_* = (Enc(\Pi[i]))_{i \in [\ell]}$, $V_*(x)$ answers each query $i \in [\ell]$ of V(x) with $Enc^{-1}(Enc(\Pi[i])) = \Pi[i]$.

Robustification

Robust soundness: Fix $x \notin L(R)$ and $\widehat{\Pi}_* = (\widehat{c}_i)_{i \in [\ell]} \in \{0,1\}^{N-\ell}$.

Define the event $E = \text{"local view } \widetilde{\Pi}_*[Q_*(x,g)]$ contains \widehat{C}_i that is at (relative) distance $\geqslant \delta_2$ from the code". Then $\Pr_{s} \left[\Delta \left(\widetilde{\Pi}_*[Q_*(x,g)], R(v_*)[S_*(x,g)] \right) < \frac{\delta}{2q} \right]$ (any robustness parameter $\sigma < \frac{\delta}{2q}$, e.g. $\sigma = \frac{\delta}{4q}$)

 $\leq P_{s} \left[\Delta \left(\widetilde{\Pi}_{*}[Q_{*}(x,g)], R(V_{*})[S_{*}(x,g)] \right) < \frac{\delta}{2q} | E \right] + P_{s} \left[\Delta \left(\widetilde{\Pi}_{*}[Q_{*}(x,g)], R(V_{*})[S_{*}(x,g)] \right) < \frac{\delta}{2q} | E \right]$ $\leq O + \varepsilon_{s}.$

- Suppose that ∏*[Q*(x,g)] contains ĉ; that is at (relative) distance ≥ 5/2 from the code.
 Then ∏*[Q*(x,g)] is at (relative) distance ≥ 5/2 from any accepting local view,
 because every accepting local view consists of q strings in the code.
- Define the "correction" $\overline{\Pi}_{*}:=(\overline{c_{i}})_{i\in[\ell]}$ where $\overline{c_{i}}$ is closest codeword to c_{i} (break ties arbitrarily). Define its decoding $\overline{\Pi}:=(Enc^{-1}(\overline{c_{i}}))_{i\in[\ell]}\in\Sigma^{\ell}$. By the soundness of V, R [$V_{*}^{\overline{\Pi}_{*}}(x)$] = R [$V^{\overline{\Pi}}(x)$ =1] $\leq E_{s}$. If every string in $\overline{\Pi}_{*}[Q_{*}(x,g)]$ is at (relative) distance $\langle \delta_{/2} \rangle$ to the code then $\overline{\Pi}_{*}[Q_{*}(x,g)]$ is the ONLY string of q codewords that is at (relative) distance $\langle \delta_{/2q} \rangle$ to $\widehat{\Pi}_{*}[Q_{*}(x,g)]$. So $P_{r}[\Delta(\widehat{\Pi}_{*}[Q_{*}(x,g)],R(V_{*})[S_{*}(x,g)]) \langle \frac{\delta}{2q} \rangle = \frac{P_{r}[\overline{\Pi}_{*}[Q_{*}(x,g)]\in R(V_{*})[S_{*}(x,g)]}{P_{r}[\overline{\Pi}_{*}[Q_{*}(x,g)]\in R(V_{*})[S_{*}(x,g)]} = \frac{P_{r}[V_{*}^{\overline{\Pi}_{*}}(x)=1]$.

The bound $\frac{S}{2q}$ can be improved to $\left\lceil qN\frac{\delta}{2q}\right\rceil/qN = \frac{\left\lceil NS/2\right\rceil}{qN}$ ($\frac{\delta}{2q}$ rounded up to the next multiple of $\frac{1}{qN}$) via the same analysis.

GOAL: reduce query complexity to constant at the expense of alphabet size

IDEA: provide the answer to each query set (as a large symbol) + consistency test

1.
$$\pi := P(x,w) \in \Sigma^{\ell}$$

2. For every ge {0,1}":

$$a_g := T[Q(x,g)] \in \Sigma^q$$

3. Output T*:= (T, (a,), (a,), (o,)).

$$\Pi_{*} := \left(\begin{array}{c} \Pi : [\ell] \to \Sigma \\ \end{array} \right), \left(\begin{array}{c} \alpha_{g} : [q] \to \Sigma \\ \end{array} \right)_{g \in \{0,1\}^{r}} \right)$$

$$\bigvee_{*}^{\pi_{*}}(\times)$$

- 1. Sample ge {0,1} and ie [9].
- 2. Read ag∈ ∑9 and TT[Q(x,g)[i]].
- 3. Check that ag[i] = π[Q(x,g)[i]].
- 4. Check that V(x;g)=1 when answering j-th query with $a_g[j]$.

 $\underline{lemma:} \quad PCP[\mathcal{E}_{c},\mathcal{E}_{s},\boldsymbol{\Sigma},\boldsymbol{\ell},q,r] \leq PCP[\mathcal{E}_{c},\mathcal{E}_{s}^{!}=1-\frac{1-\mathcal{E}_{s}}{q},\boldsymbol{\Sigma}^{!}=\boldsymbol{\Sigma}^{q},\boldsymbol{\ell}^{!}=\boldsymbol{\ell}+2^{r},q^{!}=2,r^{!}=r+\log q]$

Does NOT suffice for us: we need constant soundness error even when q is super-constant.

Nevertheless, we prove soundness because the analysis is a useful warm-up.

 $\underline{lemma:} \quad PCP[\mathcal{E}_{c},\mathcal{E}_{s},\boldsymbol{\Sigma},\boldsymbol{\ell},q,r] \subseteq PCP[\mathcal{E}_{c},\mathcal{E}_{s}'=1-\frac{1-\mathcal{E}_{s}}{q},\boldsymbol{\Sigma}'=\boldsymbol{\Sigma}^{q},\boldsymbol{\ell}'=\boldsymbol{\ell}+2^{r},q'=2,r'=r+\log q]$

Proof of soundness.

Fix $x \not\in L(R)$ and $\Pi_* = (\Pi, (a_g)_{g \in \{0,1\}^r})$.

$$P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] = P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] V_{r}^{\pi_{*}}(x) = 1 \right] + P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] V_{r}^{\pi_{*}}(x) = 0 \right] \cdot P_{r} \left[V_{*}^{\pi_{*}}(x) = 0 \right] \cdot P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] V_{r}^{\pi_{*}}(x) = 0$$

$$\leq 1 \cdot P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] + \left(1 - \frac{1}{q} \right) \cdot \left(1 - P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] \right)$$

$$\leq 1 \cdot P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] + \left(1 - \frac{1}{q} \right) \cdot \left(1 - P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] \right)$$

$$= \frac{1}{q} \cdot P_{r} \left[V_{*}^{\pi_{*}}(x) = 1 \right] + 1 - \frac{1}{q} \leq \frac{1}{q} \cdot \mathcal{E}_{s} + 1 - \frac{1}{q} = 1 - \frac{1 - \mathcal{E}_{s}}{q} .$$

We are left to show the inequality highlighted in green:

$$\Pr\left[V_{*}^{\Pi_{*}}(x)=1 \mid V^{\Pi}(x)=0 \right] \leqslant \Pr_{g,x} \left[V_{*}^{\Pi_{*}}(x;(g,x))=1 \mid \frac{\alpha_{g} \neq \pi[Q(x,g)]}{V \mid Q(x,g),\alpha_{g}]}_{(X;g)=0} \right]$$

$$\leqslant \Pr_{g,x} \left[V_{*}^{\Pi_{*}}(x;(g,x))=1 \mid \alpha_{g} \neq \pi[Q(x,g)] \right]$$

$$\leqslant \Pr_{g,x} \left[\alpha_{g}[x]=\pi[Q(x,g)[x]] \mid \alpha_{g} \neq \pi[Q(x,g)] \right]$$

$$\leqslant 1-\frac{1}{9}.$$

Fix a field IF, subset H⊆IF, and number of variables meN. Assume that IFI > max{IΣI,9}.

Identify [l] with H^m by setting m:= log l for convenience

View a query set $Q(x,g) \subseteq [l]$ as q elements in H^m .

Changes from prior approach:

- replace π: [l]→Σ with its (F, H, m) extension π: F^m→ F
- teplace $a_g: [q] \rightarrow \Sigma$ with $\hat{a_g}(z) := \hat{\pi}(Q_g(z)) \in \mathbb{F}^{< q \cdot m \cdot |H|}[z]$ where

Qg: FF→F is m polynomials of degree <q s.t. \field \Qg(j) := Q(x,g)[j] \in H.

(We use 1,2,...,q to denote any q distinct elements in F.)

WARM UP:
$$\Pi_{\star} := \left(\begin{array}{c|c} \widehat{\pi} : \mathbb{F}^{m} \to \mathbb{F} \\ \hline \end{array} \right), \left(\begin{array}{c|c} \widehat{\alpha}_{3}(2) \\ \hline \end{array} \right) \rangle_{g \in \{0,1\}^{r}}$$

P* (x,w)

- 1. $\pi := P(x, w) \in \sum_{i=1}^{\ell} \subseteq \mathbb{F}^{H^{in}}$
- 2. \(\hat{\pi}:\mathbb{F}^m\rightarrow\mathbb{F}\) is (\mathbb{F}, \mathbb{H}, \mathbb{m})-extension of \(\pi\).
- 3. $\forall g \in \{0,1\}^r : \hat{a}_g(z) := \hat{\pi}(Q_g(z))$.
- 4. Output T* := (Î, (â,), (ê,)).

$\bigvee_{\mathbf{x}}^{\mathbf{\pi}_{\mathbf{x}}}(\mathbf{x})$

- 1. Sample ge {0,1} and YEF.
- 2. Read âs ∈ F[=] and fi(Qs(x)).
- 3. Check that âg(x) = π(Qg(x)).
- 4. Check that V(x;g)=1 when answering j-th query with $\hat{a}_g(j)$.

[4/7]

Bundling Queries

$$\Pi_* = \left(\begin{array}{c} \widehat{\Pi} : \mathbb{H}^m \to \mathbb{H} \\ \end{array} \right), \left(\begin{array}{c} \widehat{\alpha}_{S}(\mathbf{z}) \\ \end{array} \right)_{S \in \{0,1\}^r}$$

$$\bigvee_{*}^{\pi_{*}}(\chi)$$

- 1. Sample ge {0,1} and Yelf.
- 2. Read age F[=] and fi(Qg(x)).
- 3. Check that âg(x) = π(Qg(x)).
- 4. Check that V(x;g)=1 when answering j-th query with $\hat{a}_g(j)$.

For this warm-up case, we assume that π is an (IF, H, m)-extension of (some) π:[l] → Σ.

claim: The soundness error is
$$\leq 1 - (1 - \epsilon_s) \cdot \left(1 - \frac{q \cdot m \cdot |H|}{|H|}\right)$$
. [this improves on $1 - (1 - \epsilon_s) \cdot \frac{1}{q}$]

<u>proof:</u> Suppose that $x \not\in L(R)$ and fix a PCP $\pi_* := (\hat{\pi}, (\hat{\alpha}_g)_{g \in \{0,1\}^r})$.

It suffices to show that $\Pr[V_*^{\Pi_*}(x)=1 \mid V^{\Pi}(x)=0] \leqslant \frac{q \cdot m \cdot |H|}{|F|}$ (by a similar analysis as the prior construction).

$$\begin{split} \Pr\left[\ \bigvee_{*}^{\Pi_{*}}(x) = 1 \ \middle| \ \bigvee_{*}^{\Pi}(x) = 0 \right] &\leqslant \ \Pr_{g, \delta} \left[\ \bigvee_{*}^{\Pi_{*}}(x) (g, \delta) \right] = 1 \ \middle| \ \hat{\alpha}_{g} \neq \hat{\pi}[Q_{g}] \\ &\leqslant \ \Pr_{g, \delta} \left[\ \bigvee_{*}^{\Pi_{*}}(x) (g, \delta) \right] = 1 \ \middle| \ \hat{\alpha}_{g} \neq \hat{\pi}[Q_{g}] \right] \\ &\leqslant \ \Pr_{g, \delta} \left[\ \hat{\alpha}_{g}[\delta] = \hat{\pi}[Q_{g}(\delta)] \ \middle| \ \hat{\alpha}_{g} \neq \hat{\pi}[Q_{g}] \right] \\ &\leqslant \ \Pr_{g, \delta} \left[\ \hat{\alpha}_{g}[\delta] = \hat{\pi}[Q_{g}(\delta)] \ \middle| \ \hat{\alpha}_{g} \neq \hat{\pi}[Q_{g}] \right] \\ &\leqslant \ \frac{q \cdot m \cdot |H|}{|H|} \ . \end{split}$$

Q: how to handle the noisy case? We no longer require that f is the That is $T_* = (f, (\hat{a}_s)_{s \in \{0,1\}^r})$ where $f: \mathbb{F}^m \to \mathbb{F}$ is arbitrary. (F,H,m)-extension $\hat{\pi}$ of some $\pi: [\ell] \to \Sigma$.

PROBLEM 1: The Rubinfeld-Sudan LDT that we studied makes $\omega(1)$ queries to f.

In fact, every LDT makes d+2 = w(1) queries to f.

Fix 1: We use a large-alphabet constant-query PCPP for low-degreeness.

The Line vs. Point Test is such a PCPP.

$$P_{LPT}(f) := \left(\hat{q}_{a,b} := f(ax+b) \in \mathbb{F}^{\leq d}[x]\right)_{a,b \in \mathbb{F}^m}$$

- 1. Sample a, b e FF and Me FF.
- 2. Check that f(am+b)= gab(m).

Completeness: \f: Fm > F of total degree & d for , TTpx = PLPT (f), Pr [VLPT = 1]=1.

Soundness: $\forall f: \mathbb{F}^m \to \mathbb{F} \ \forall \ \widetilde{\pi}_{px} = (\hat{g}_{a,b} \in \mathbb{F}^{\leq d}[x]), \ f \text{ is } \delta\text{-far from total degree } d \to \Pr[V_{LPT}^{f,\widetilde{\pi}_{px}} = 1] \leqslant \mathcal{E}_{LPT}(\delta).$

Fact [that we do not prove]: ∃ do, Eo ∈ (0,1) s.t. 6>60 → ELPT(8) € Eo.

Q: how to handle the noisy case? We no longer require that f is the That is $T_* = (f, (\hat{a}_s)_{s \in \{0,1\}^r})$ where $f: \mathbb{F}^m \to \mathbb{F}$ is arbitrary. (F,H,m)-extension $\hat{\pi}$ of some $\pi: [\ell] \to \Sigma$.

PROBLEM 2: The query Qg(8) to f is NOT uniformly random in Fm.

Indeed, $Q_g(x) := \sum_{j \in [q]} Q(x,g)[j] \cdot L_{[q],j}(x)$

where $\{L_{[q],j}(x)\}_{j\in [q]}$ are the Lagrange polynomials for [q]. The degree of each $L_{[q],j}(x)$ is q-1, and $L_{[q],j}(\delta)$ is (typically) NOT uniformly random for random $Y \leftarrow \mathbb{F}$.

E.g. the distribution $\{\delta^2 \mid \delta \in \mathbb{F}\}$ is supported only on squares of \mathbb{F} . (Approx half the elements if char(\mathbb{F}) $\neq 2$.)

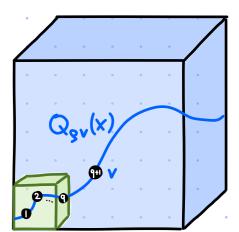
Fix 2: We randomize the query to f.

For every veff

Qgv: F → F is m polynomials of degree <q s.t. { \ \Qgv (q+1) := \Q (x, g)[j] \in H \ \ \Qgv (q+1) := \V

Note that, for random ve IFM, \tag{\text{Ve IF}[9] Q_{\text{sv}}(\text{\text{V}}) is random in IFM.

Indeed,
$$Q_{g}(x) := \sum_{j \in [q]} Q(x,g)[j] \cdot L_{[q+1],j}(x) + v \cdot L_{[q+1],q+1}(x)$$
 and
$$L_{[q+1],q+1}(x) \neq 0 \text{ for } x \in \mathbb{F} \setminus [q].$$



[7/7]

lines oracle of degree d<m.|H|

The final construction.

$$\Pi_* = \left(\begin{array}{c} f : \mathbb{H}^m \to \mathbb{H} \\ \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\ \\ \downarrow \in \mathbb{H}^m \end{array} \right)_{g \in \{0,1\}^r}, \left(\begin{array}{c} \hat{\mathbb{Q}}_{a,b} \\ \\ \downarrow \downarrow \downarrow \downarrow \\ \\ \downarrow \in \mathbb{H}^m \end{array} \right)_{a,b \in \mathbb{H}^m}$$

P* (x,w)

1.
$$\pi := P(x, w) \in \Sigma^{\ell} \subseteq \mathbb{F}^{H^{n}}$$

3.
$$\forall g \in \{0,1\}^r, v \in \mathbb{F}^m : \hat{\alpha}_{gv}(z) := \hat{\pi}(Q_{gv}(z))$$
.

5. Output
$$T_* := (\hat{\pi}, (\hat{\alpha}_{gv})_{g \in \{0,1\}^r}, (\hat{g}_{a,b})_{a,b \in \mathbb{F}^m})$$

$$\bigvee_{*}^{\pi_{*}}(\chi)$$

3. Check that
$$\hat{a}_{gv}(x) = f(Q_{gv}(x))$$
.

4. Check that
$$V(x;g)=1$$
 when answering j-th query with $\hat{a}_{g}(j)$.

5. Sample
$$a,b \in \mathbb{F}^m$$
 and $\mu \in \mathbb{F}$, and check that $f(a\mu + b) = \hat{g}_{a,b}(\mu)$.

$$\underline{lemma:} \ PCP[\mathcal{E}_{c},\mathcal{E}_{s},\Sigma,\ell,q,r] \subseteq PCP \begin{bmatrix} \mathcal{E}_{c} & \mathcal{E}_{s}' = max \left\{ \mathcal{E}_{LPT}(\mathcal{E}), 1 - (1 - \mathcal{E}_{s}) \cdot \left(1 - \frac{qm|H|}{|F|-q} - \delta\right) \right\} \\ \Sigma' = \Sigma^{qm|H|} & \mathcal{L}' = |F|^{M} + 2^{r} |F|^{M} + |F|^{2m} \\ q' = 4 & r' = r + O(m \cdot log |F|) \end{bmatrix}$$

We can then set
$$|H| = \log \ell$$
, $m = \frac{\log \ell}{\log |H|} = \frac{\log \ell}{\log \log \ell}$, $|F| = O(q m |H|)$.

Bibliography

Robust PCPs

- [DR 2006]: Assignment testers: towards a combinatorial proof of the PCP theorem, by Irit Dinur, Omer Reingold.
- [ALMSS 1998]: Proof verification and the hardness of approximation problems, by Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, Mario Szegedy.

Section 7.2 on O(1) query tests